Heavy Elements in Exoplanets: Planetesimal Accretion vs Pebble Accretion

Yasuhiro Hasegawa

Jet Propulsion Laboratory, California Institute of Technology

in collaboration with Geoff Bryden, Masahiro Ikoma, Gautam Vasisht, Mark Swain

Exoplanets are Ubiquitous in Our Galaxy New Kepler Planet Candidates

Background I: How do Planets form?

Background 2: How do Planets form?

The planet radius can be observed => the bulk density

The atmosphere can be observed the composition

Estimate of the heavy element mass in observed exoplanets

Target selection: relatively cool close-in exoplanets

Compute the radius evolution of planets, by distribute heavy elements in cores and atmospheres

Results of Thorngren et al 2016

$$M_Z \propto M_p^{\gamma} \text{ with } \gamma = 0.61 \approx 3/5$$

$$\frac{Z_p}{Z_s} = \frac{M_Z}{M_p} \frac{1}{Z_s} \propto M_p^{\alpha} \text{ with } \alpha = -0.45 \approx -2/5$$

 $lphapprox\gamma-1$ => M_Z and M_p are almost independent of Z_s

 M_Z : the total heavy element mass in planets with the mass of $\,M_P$

 Z_s : the metallicity of the host star

Planet Formation via Core Accretion: Accretion of Gas and Solids

$$M_{core} \simeq 10 M_{\oplus}$$

 M_{Z} increases at the final formation stage

Planet Formation via Core Accretion: Accretion of Gas and Solids

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{core} + M_{pl} + M_{pe} + M_{Z,gas}$$

Planetesimals

Pebbles

$M_{Z,gas} = Z_s M_{XY}$

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{core} + M_{pl} + M_{pe} + M_{Z,gas}$$

Planetesimals

Pebbles

$$M_{Z,gas} = Z_s M_{XY}$$

Contribution arising from gas accretion is negligible

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{core} + M_{pl} + M_{pe} + M_{Z,gas}$$

Planetesimals

Pebbles

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{core} + M_{pl} + M_{pe} + M_{Z,gas}$$

Planetesimals

$$M_{Z,gas} = Z_s M_{XY}$$

Contribution arising from gas accretion is negligible

Runaway gas accretion occurred for planets with $M_p>100M_{\oplus}$

Some mechanisms are needed for postponing runaway gas accretion

Pebbles

 M_{core} is determined by disk parameters for both planetesimal & pebble accretion

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{core} + M_{pl} + M_{pe} + M_{Z,gas}$$
 Planetesimals

 M_{core} is determined by disk parameters for both planetesimal & pebble accretion

 M_{core} is independent of M_p for both scenarios

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{zore} + M_{pl} + M_{pe} + M_{z,gas}$$

Planetesimals

Pebbles

The spatial distribution of planetesimals is the key, which is determined by the gravitational interaction with a protoplanet

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{zore} + M_{pl} + M_{pe} + M_{z,gas}$$

Planetesimals

Pebbles

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{zore} + M_{pl} + M_{pe} + M_{Z,gas}$$

Planetesimals

The spatial distribution of planetesimals is the key, which is determined by the gravitational interaction with a protoplanet

 $M_Z \simeq M_{pl} \propto M_p^{1/3}$ with no gap in planetesimal disks

 $M_Z \simeq M_{pl} \propto M_p^{3/5}$ with gaps in planetesimal disks

Pebbles

The spatial distribution of planetesimals is the key, which is determined by the gravitational interaction with a protoplanet

 $M_Z \simeq M_{pl} \propto M_p^{1/3}$ with no gap in planetesimal disks

 $M_Z \simeq M_{pl} \propto M_p^{3/5}$ with gaps in planetesimal disks

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{Zore} + M_{pl} + M_{pe} + M_{Z,gas}$$

Planetesimals

Pebbles

The spatial distribution of planetesimals is the key, which is determined by the gravitational interaction with a protoplanet

 $M_p^{1/3}$ $M_Z \simeq M_{pl} \propto M_p^{1/3}$ with no gap in planetesimal disks

 $M_Z \simeq M_{pl} \propto M_p^{3/5}$ with gaps in planetesimal disks

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{zore} + M_{pl} + M_{pe} + M_{Z,gas}$$

Planetesimals

Pebbles

Understanding of pebble accretion is premature

e.g., Johansen & Lambrechts 2017

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{zere} + M_{pl} + M_{pe} + M_{Z,gas}$$

Planetesimals

Pebbles

Understanding of pebble accretion is premature

$$M_Z \simeq M_{pe} \propto M_p^{1/3}$$

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{Xre} + M_{pl} + M_{pe} + M_{X,gas}$$
 Planetesimals

Understanding of pebble accretion is premature

$$M_Z \simeq M_{pe} \propto M_p^{1/3}$$

$$M_p = M_{XY} + M_Z$$

$$M_Z = M_{zore} + M_{pl} + M_{pe} + M_{Z,gas}$$

Planetesimals

Pebbles

The total heavy elements are determined by the final stage of planet formation

At the stage, solids are accreted onto planets from gapped planetesimal disks

The total heavy elements are determined by the final stage of planet formation

At the stage, solids are accreted onto planets from gapped planetesimal disks

Rocky

Stars

Evolution of atmospheric metallicity can be explored, comparing hot and warm Jupiters

Planetary cores might be fully dissolved into their atmospheres for gas-poor sub-giants

Gas-poor sub-giants

Rocky

(super)Earths

Gas-rich giants

Stars

Summary Hasegawa et al. 2018, submitted

- Formation mechanisms of observed exoplanets are better constrained, by taking into account planet mass, orbital period, and planet composition
- Observed warm Jupiters tend to have correlations:

$$M_Z \propto M_p^{3/5}$$
 $\frac{Z_p}{Z_s} = \frac{M_Z}{M_p} \frac{1}{Z_s} \propto M_p^{-2/5}$

- Our results indicate that the contribution (dust) arising from gas accretion is negligible
- ullet Runaway gas accretion is postponed until $M_p>100 M_{\oplus}$
- Accretion of solids from gapped planetesimal disks can reproduce the above trends better
- We propose a classification of observed exoplanets